Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Mod Pathol ; 37(5): 100465, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38460675

RESUMO

Primary cutaneous follicle center lymphoma (PCFCL) has an excellent prognosis using local treatment, whereas nodal follicular lymphoma (nFL), occasionally presenting with cutaneous spread, often requires systemic therapy. Distinction of the 2 diseases based on histopathology alone might be challenging. Copy number alterations (CNAs) have scarcely been explored on a genome-wide scale in PCFCL; however, they might serve as potential biomarkers during differential diagnosis and risk stratification. Low-coverage whole-genome sequencing is a robust, high-throughput method for genome-wide copy number profiling. In this study, we analyzed 28 PCFCL samples from 20 patients and compared the copy number profiles with a cohort of diagnostic samples of 64 nFL patients. Although the copy number profile of PCFCL was similar to that of nFL, PCFCL lacked amplifications of 18q, with the frequency peaking at 18q21.33 in nFL cases involving the BCL2 locus (PCFCL: 5.0% vs nFL: 31.3%, P = .018, Fisher exact test). Development of distant cutaneous spread was significantly associated with higher genomic instability including the proportion of genome altered (0.02 vs 0.13, P = .033) and number of CNAs (2 vs 9 P = .017), as well as the enrichment of 2p22.2-p15 amplification involving REL and XPO1 (6.3% vs 60.0%, P = .005), 3q23-q24 amplification (0.0% vs 50.0%, P = .004), 6q16.1-q23.3 deletion (6.3% vs 50.0%, P = .018), and 9p21.3 deletion covering CDKN2A and CDKN2B loci (0.0% vs 40.0%, P = .014, all Fisher exact test) in PCFCL. Analysis of sequential tumor samples in 2 cases harboring an unfavorable clinical course pointed to the acquisition of 2p amplification in the earliest common progenitor underlining its pivotal role in malignant transformation. By performing genome-wide copy number profiling on the largest patient cohort to date, we identified distinctive CNA alterations conceivably facilitating the differential diagnosis of PCFCL and secondary cutaneous involvement of nFL and potentially aiding the risk stratification of patients with PCFCL in the future.

3.
J Mol Diagn ; 26(4): 245-256, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280422

RESUMO

Tumor relapse is well recognized to arise from treatment-resistant residual populations. Strategies enriching such populations for in-depth downstream analyses focus on tumor-specific surface markers; however, enrichment using intracellular biomarkers remains challenging. Using B-cell lymphoma as an exemplar, we demonstrate feasibility to enrich B-cell lymphoma 2 (BCL2)high populations, a surrogate marker for t(14;18)+ lymphomas, for use in downstream applications. Different fixation protocols were assessed for impact on antibody expression and RNA integrity; glyoxal fixation demonstrated superior results regarding minimal effects on surface and intracellular expression, and RNA quality, compared with alternative fixatives evaluated. Furthermore, t(14;18)+ B cells were effectively detected using intracellular BCL2 overexpression to facilitate tumor cell enrichment. Tumor cell populations were enriched using the cellenONE F1.4 single-cell sorting platform, which detected and dispensed BCL2high-expressing cells directly into library preparation reagents for transcriptome analyses. Sorted glyoxal-fixed cells generated good quality sequencing libraries, with high concordance between live and fixed single-cell transcriptomic profiles, discriminating cell populations predominantly on B-cell biology. Overall, we successfully developed a proof-of-concept workflow employing a robust cell preparation protocol for intracellular markers combined with cell enrichment using the cellenONE platform, providing an alternative to droplet-based technologies when cellular input is low or requires prior enrichment to detect rare populations. This workflow has wider prognostic and therapeutic potential to study residual cells in a pan-cancer setting.


Assuntos
Recidiva Local de Neoplasia , RNA , Humanos , Fluxo de Trabalho , Neoplasia Residual , RNA/genética , Glioxal , Proteínas Proto-Oncogênicas c-bcl-2/genética
4.
Br J Haematol ; 201(1): 25-34, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744544

RESUMO

The implementation of whole genome sequencing and large somatic gene panels in haematological malignancies is identifying an increasing number of individuals with either potential or confirmed germline predisposition to haematological malignancy. There are currently no national or international best practice guidelines with respect to management of carriers of such variants or of their at-risk relatives. To address this gap, the UK Cancer Genetics Group (UKCGG), CanGene-CanVar and the NHS England Haematological Oncology Working Group held a workshop over two days on 28-29th April 2022, with the aim of establishing consensus guidelines on relevant clinical and laboratory pathways. The workshop focussed on the management of disease-causing germline variation in the following genes: DDX41, CEBPA, RUNX1, ANKRD26, ETV6, GATA2. Using a pre-workshop survey followed by structured discussion and in-meeting polling, we achieved consensus for UK best practice in several areas. In particular, high consensus was achieved on issues regarding standardised reporting, variant classification, multidisciplinary team working and patient support. The best practice recommendations from this meeting may be applicable to an expanding number of other genes in this setting.


Assuntos
Predisposição Genética para Doença , Neoplasias Hematológicas , Humanos , Medicina Estatal , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Mutação em Linhagem Germinativa , Inglaterra , Células Germinativas
5.
Eur J Med Genet ; 66(4): 104727, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36775010

RESUMO

Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.


Assuntos
Predisposição Genética para Doença , Leucemia , Humanos , Criança , Aconselhamento Genético , Mutação em Linhagem Germinativa , Fatores de Transcrição , Peptídeos e Proteínas de Sinalização Intracelular
6.
Signal Transduct Target Ther ; 8(1): 80, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843114

RESUMO

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Rearranjo Gênico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Fenótipo
8.
Blood Adv ; 7(5): 845-855, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35947123

RESUMO

Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but fell short of providing a consistent relapse-specific genetic signature. In our study, we have focused attention on the changes in GEP accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo patients with DLBCL. COO remained stable from diagnosis to relapse in 80% of patients, with only a single patient showing COO switching from activated B-cell-like (ABC) to germinal center B-cell-like (GCB). Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes that defined clinically distinct high- and low-risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials.


Assuntos
Linfoma Difuso de Grandes Células B , Recidiva Local de Neoplasia , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfócitos B/metabolismo , Centro Germinativo/metabolismo
9.
JCI Insight ; 8(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36480300

RESUMO

Precision medicine can significantly improve outcomes for patients with cancer, but implementation requires comprehensive characterization of tumor cells to identify therapeutically exploitable vulnerabilities. Here, we describe somatic biallelic TET2 mutations in an elderly patient with acute myeloid leukemia (AML) that was chemoresistant to anthracycline and cytarabine but acutely sensitive to 5'-azacitidine (5'-Aza) hypomethylating monotherapy, resulting in long-term morphological remission. Given the role of TET2 as a regulator of genomic methylation, we hypothesized that mutant TET2 allele dosage affects response to 5'-Aza. Using an isogenic cell model system and an orthotopic mouse xenograft, we demonstrate that biallelic TET2 mutations confer sensitivity to 5'-Aza compared with cells with monoallelic mutations. Our data argue in favor of using hypomethylating agents for chemoresistant disease or as first-line therapy in patients with biallelic TET2-mutated AML and demonstrate the importance of considering mutant allele dosage in the implementation of precision medicine for patients with cancer.


Assuntos
Dioxigenases , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Azacitidina , Leucemia Mieloide Aguda/genética , Estimativa de Kaplan-Meier , Mutação , Proteínas de Ligação a DNA/genética , Dioxigenases/genética
10.
Br J Haematol ; 199(5): 754-764, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156210

RESUMO

Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.


Assuntos
Medula Óssea , Eritropoese , Humanos , Eritropoese/genética , Mutação em Linhagem Germinativa , Reparo do DNA/genética , Células Germinativas , DNA Helicases/genética
12.
Blood ; 140(21): 2193-2227, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001803

RESUMO

With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.


Assuntos
Linfoma , Neoplasias , Humanos , Linfoma/diagnóstico , Linfoma/genética , Linfoma/terapia , Genômica/métodos , Medicina de Precisão , Sequenciamento de Nucleotídeos em Larga Escala , Tomada de Decisão Clínica
13.
RNA ; 28(9): 1224-1238, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768279

RESUMO

The DExD/H-box RNA helicase DHX34 is a nonsense-mediated decay (NMD) factor that together with core NMD factors coregulates NMD targets in nematodes and in vertebrates. Here, we show that DHX34 is also associated with the human spliceosomal catalytic C complex. Mapping of DHX34 endogenous binding sites using cross-linking immunoprecipitation (CLIP) revealed that DHX34 is preferentially associated with pre-mRNAs and locates at exon-intron boundaries. Accordingly, we observed that DHX34 regulates a large number of alternative splicing (AS) events in mammalian cells in culture, establishing a dual role for DHX34 in both NMD and pre-mRNA splicing. We previously showed that germline DHX34 mutations associated to familial myelodysplasia (MDS)/acute myeloid leukemia (AML) predisposition abrogate its activity in NMD. Interestingly, we observe now that DHX34 regulates the splicing of pre-mRNAs that have been linked to AML/MDS predisposition. This is consistent with silencing experiments in hematopoietic stem/progenitor cells (HSPCs) showing that loss of DHX34 results in differentiation blockade of both erythroid and myeloid lineages, which is a hallmark of AML development. Altogether, these data unveil new cellular functions of DHX34 and suggest that alterations in the levels and/or activity of DHX34 could contribute to human disease.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Processamento Alternativo , Animais , Humanos , Leucemia Mieloide Aguda/genética , Mamíferos/genética , Síndromes Mielodisplásicas/genética , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética
14.
Sci Transl Med ; 14(650): eabn3248, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731890

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Leucemia Mieloide Aguda , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinases relacionadas a CDC2 e CDC28/farmacologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas , Proteômica
17.
Nat Commun ; 12(1): 6233, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716350

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).


Assuntos
Antígenos HLA/genética , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleotídeo Único , Aldeído Redutase/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Leucemia Mieloide Aguda/mortalidade , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , População Branca/genética
19.
Methods Mol Biol ; 2366: 321-342, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236648

RESUMO

Enforced activation of NF-κB signaling can be achieved by constitutive NF-κB-inducing kinases, IKK2 and NIK, or via lymphoma-associated mutants of MYD88, CARD11, and CD79B. In order to model Diffuse Large B Cell Lymphoma (DLBCL) in mice, conditional alleles for these proteins are combined with alleles targeting Cre recombinase expression in mature B cells. However, unopposed NF-κB signaling promotes plasmablast differentiation, and as a consequence the model system must be complemented with further mutations that block differentiation, such as Prdm1/BLIMP1 inactivation or overexpression of BCL6. Here, we describe the currently available tools for DLBCL models in mice and their relative advantages and drawbacks. Furthermore, we describe methods to monitor lymphomagenesis, using ultrasound tomography of the spleen, and the technique of partial splenectomy surgery with recovery. These powerful techniques allow paired comparison of individual lymphoma cases before and after interventions, including therapies, and to study the evolution of lymphoma over time. NF-κB activation also promotes widespread nodal involvement with lymphoma and we describe the post-mortem dissection of major nodal groups.


Assuntos
Linfoma Difuso de Grandes Células B , Animais , Linfócitos B/metabolismo , Modelos Animais de Doenças , Linfoma Difuso de Grandes Células B/genética , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais
20.
Blood ; 138(5): 370-381, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786580

RESUMO

Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...